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ABSTRACT 

A(d, n) is defined to be the maximum diameter of a d-polytope with n-facets. 
The main results of the work are an evaluation of A(4, 10) and A(5, 11). Also, 
improved upper bounds are found for A(6, 13) and A(7,14). 

A d-polytope is the convex hull of a finite set of points whose affine hull is 

E d. The points form vert P, the set of vertices of the polytope P, and the faces of  

dimension d - 1 are called the faces. A d-polytope is said to be simple if each 

vertex belongs to precisely d facets. If  P is a simple d-polytope and x ~ vert P 

then the d facets through x are called the x-facets. If  P is a d-polytope with n 

facets, we write P E (d, n). If  x and y are two vertices of P then 5(x, y) denotes the 

combinatorial distance between x and y. The diameter d(P) of P is defined by 

d(P) = max {5(x,y) : x, y ~ vert P}. Two vertices x, y of  P are said to be diametral 

vertices if  6(x, y) = d(P). Finally, we write A(d, n) = max (d(P): P �9 (d, n)}; we 

note that this is the same as Ab(d, n) in [1]. 

The purpose of this work is to obtain improvements on the known estimates 

for A(d, n) for certain values of  d and n. The main results are an evaluation of 

h(4,10) and A(5,11). We also improve the known upper bounds for A(6,13) and 

A(7,14). These results are primarily concerned with the d-step conjecture which 

can be stated as saying A(d, n) < n - d. Combining the work of Klee and Walkup 

[1] and Larman [2], the known results which we shall need are: 

A ( 3 , n ) =  [ ~ ] - l , n > 4 : 5 < A ( 4 , 1 0 ) < 6 :  

6 < A(5,11) < 7: A(4,11) < 7: A(5,12) < 9: 

A(6,13) < 10: A(7,14) < 11. 
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LEMmA. I f P  ~(3,9) and d(P) = 5 then, 

(i) P is simple and has 14 vertices, 

(ii) I f  ao, a5 e vert P and 6(ao, as) = 5 then ~5(ao, v) < 4for  all v ~ vert P \  {as}, 
i i i i (iii) I f P  i = ao, al,  a2, a3, a4, a5 (i = 1,2,3) are 3 disjoint paths from ao to 

( i = 1 , 2 , 3 , ; j = 1 , 2 , 3 , 4 )  form 6 disjoint pairs as then the 12 vertices aj 
i " { ak, a~ } , l k - t [  < 1, i ~ j such that (a~, a{) is an edge. 

(iv) Each facet containing ao or a s has at most 6 vertices, 

(v) I f  a facet containing ao (or as) is an n-gon with n>5 then the other two 

facets containing ao (or as) are a triangle and a quadrilateral, 

(vi) There is at most one facet not containing a0, a~, a 2, a 3 and a5. I f  such a 

facet F is present, then one of the facets that contain a o is a triangle. Further, 

i f  F has 6 or more vertices then it must contain two neighbours of as. 

vii) P cannot have a triangular facet not containing a o or as. 

PROOF. The results of this lemma, apart from (vi) are due to Larman [2] or 

are immediate corollaries of his results, and so it will suffice to prove (vi). 

Using (iv) and the fact that 6(a~, a s ) =  4 (i = 1,2,3) one can see that the 

neighbours of ao lie on at least 2 distinct facets not containing ao or as. This 

means there is at most one remaining facet not containing ao, a5 nor any neighbour 

of ao since P ~ (3,9). If  no facet containing ao is a triangle then the neighbours 

lie on 3 distinct facets not containing a0 and as. Thus each facet of P contains 

either ao, a5 or a neighbour of ao. Since the graph of P is planar and the P~ are 

distinct, exactly two of the P~ may meet the facet; also no P~ can use more than 3 

vertices of the facet. This shows that the facet can be at most hexagonal and in 

that case it must contain two of the vertices a4 l, a 2 and a4 a. 

We now proceed to the evaluation of A(4,10) and A(5,11). 

THEOREM 1. A(4,10) = 5. 

PROOF. Following the results of Klee and Walkup [1], it suffices to show that 

if P ~ (4,10) is simple and x and y are vertices of P not having a facet in common 

then 6(x, y ) <  5. To this end we suppose 6(x, y ) =  6 and seek a contradiction. 

This is suff• since Larman [2] has shown that we must have 6(x, y) < 6. 

Let the x-facets be F1,-" ,  F4; the y-facets G1, ..., G4 and the remaining facets X 

and Y. Let the neighbours of x be x~,.. . ,x4 and those of y be Y 1 , ' " ,  Y4 such that 

x ~ F ~  and y~r G~, i = 1, ...,4. We split the proof into two possibilities. 
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CASE 1. A nei#hbour of x (or y) belongs to a y- (or x-)facet. 

We may suppose without loss of generality that xl ~ G1. Then since 6(x, y) = 6 

we must have d(G~) = 5 and so Gx E(3,9) with x~ and y as diametral vertices. If  

x~ ~ G1 with i ~ 1, then by (ii), 6(y, xi) < 4 and so ~5(x, y) < 5. Thus we may assume 

that x~ ~ G~ for i = 2,3,4. So no neighbour of x~ in G~ lies in F~, since any such 

neighbour would be an xi with i ~ 1. Since G~ ~ (3,9), G~ n F1 ~ ~ .  Therefore, 

by (vi), G~ n F~ is the facet of G~ not containing y nor any neighbour of x~, and 

we may assume without loss of generality that F 3 ~ G~ is a triangle. 

Let G'~ be the facet of P containing Yl but not y. Then, since G~ E(3,9), 

G1 n G~ ~ ~ .  Assume xl ~ G1'n Gl, then x E G~ and so GI'~ (3,9) since otherwise 

6(x, yl) < 5. Hence applying (vii) to Gl 'we see that G1 n G~ is not a triangle. 

So we may put GI' = F2, and thus d(F2) = 5 and F2 ~ (3,9). Now F2 n G1 is a 

facet o f F 2  with at least 4 vertices. Since xq~G~ and xiq~G~ for i ~  1, F2 nG~ 

must contain a vertex, ~ say, which is distance 3 from x and 2 from yl.  So ~ and ),~ 

have a common neighbour, ~ say. Now ~ ~ G~, since otherwise ~ would be y 

or a neighbour of y both of which are impossible. If  ~ ~F~ with i ~ 2 then 

tX 1 ~ F 2 t'~ F~ and so F 2 ~ F~ is a facet of F 2 containing 7~ and x. But this is 

impossible by (iv) since 6(x, cq) = 4. Now y~ = F 2 ~ G 2 0  G 3 ~ G 4 and ~x ~ F2,  

so ~1 belongs to exactly two of G2, G3, G 4. Thus ~ must belong to exactly one of 

G2, Ga, G4 since tS(~,y)= 3. So we may assume that ~ ~F2 n G2 n G 3 and 

~ F2 n G~ n G2. Thus since ~5(~, y) = 3, G~ n G2 must be a hexagonal facet of 

G~ by (iv). Let the vertices of this facet be ~, ill, f12, Y, f13, f14 where fl~ ~ F2 n G~ 

n G2. Then since ~5(y, x~) = 5 we must have ~5 (fl~, x~) = 3 and so, by (iv). G~ n F2 

is also a hexagon. Now by (ii), no neighbour of y~ in F2 can lie in G~. Thus, 

since x ~ G~, we have the desired contradiction using (vi) and the fact that x~ ~ G1 

if i ~ l .  

So now we must assume that x~ ~ G~. We note that we may assume Yi q~ F~ for 

i = 2,3,4 since otherwise we would have a similar situation to that above. Also, 

because of (ii), no neighbour of x~ in G~ can lie in F~. Thus, using (vi), (v) and 

the fact that G~ has 14 vertices, we deduce that the facets of G~ containing x~ are a 

triangle, a quadrilateral and a pentagon and the same is true of the facets containing 

y. So the graph of G1 must be one the two possibilities shown in Fig. 1 with 

k = l  and j = 2 , 3  or 4. 

I f  y~ e f t ,  the two vertices of F~ n G~ n G] must be distance 4 from x and 

therefore must both be neighbours of y~. But this is impossible since y~= 
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Fig. 1 

G2 tqG3 riG4 ~F1.  So now we know that yiq~F1 for i=1, . . . ,4 .  We assume 

without loss of generality that Yl = G2 n G3 n G4 ~ X, j = 2, F1 n G1 n F2 ~ 

and G3 N Ga is a triangle. Then, if x4 ~ X u Ythen x 4 has a neighbour, v say, on G1 

such that 6(v, y) = 3. But then we would have 6(x, y) = 5, so this is impossible. 

Also we know that x4 r G1. If x4 ~ G2 then, by the arguments above, the graph 

of G 2 must be one of the possibilities shown in Fig. 1 with k = 4 and j = 1, 3 or 4. 

Clearly we must have j = 1 by (v) since G2 ~ G1 is a pentagon. But from the graph 
of Gx, we see that F 4 t~ G 1 A G 2 = ~ ,  and hence x4 ~ G2. Similarly, we may 

deduce that x 3 ~ X u Y u Gx u G2. If x~ ~ G3, then by (ii) we must have x3 ~ G4 

and the graph of G3 must be one of the two possibilities shown in Fig. 1 with 

k = 4 andj  = 1, 2 or 4. Nowj :~ 1 since from the graph of G1, G1 n F4 ~ G3 = ~ .  

I f j  = 4, then F4 n G3 n G 4 -~ ~ ,  but this is inconsistent with the graph of G4. 

So we must havej = 2 and since G3 n G~ is a triangle, we have G3 nG,~ is a quadri- 

lateral. Thus G1 n G4 and G3 n G4 are both quadrilaterals containing y, but 

since x3 e G4, there can only be one quadrilateral facet of G4 containing y. Hence 

x4 r G3. Since the above argument is symmetric in Xa and x4, we deduce that 

x3 r Ga and so we have x3 ~ G4 and x4 e G4. But then 6(x, y) -< 5, by (ii). This 

completes the proof of Case I. 

Case 11. No neighbour of x(or y) belongs to a y-(or x-)facet. 

All the neighbours of x and y belong to either X or Y. Clearly we cannot have 

all the neighbours of x belonging to X. 

Assume x~ ~ X for i = 1,2,3 and x4 ~ Y. Then if yj ~ X for some j, we must have 

6(xi, yj) > 4 for i = 1,2,3. We deduce that there can be only one such value ofj" 

If there were three such values of j, say j = 1,2,3, then X would have the two 

triangular facets F4 n X and G4 n X. Replacing these facets by single vertices 

results in a 3-polytope with at most 7 facets and which must have diameter 4. 

This is impossible and so we assume j takes the two values 1 and 2. Then F4 n X 

is a triangular facet of X, and y~ and Yz are neighbours in X. We remove the 
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triangular facet replacing it by a single vertex, v say. This gives us a 3-polytope X '  

with at most 8 facets and vertices v, Yl and Y2 such that 6(v, y~) = 4 for i = 1,2. 
Hence X '  must have 8 facets and 12 vertices. The vertices must lie on 3 indepen- 

dent paths from v to y, two of  which are of  length 4 and the other of length 5. 

Then we note that X '  must have a triangular facet containing yl and Y2- But the 

third vertex of this triangle must be a neighbour of  y, contradicting the assumption 

that there are only two possible values of j. This shows that there is only one 

possible value of j .  If  there is such a value we note that X must have 9 facets since 

we can again reduce it to a 3-polytope X '  of  diameter 4. So now we may assume 

further that y~ c Y, i = 2,3,4 and Yl ~ X. Thus since ~(x, y) = 6, Y must also have 9 

facets. Now F 4 is a tetrahedron with facets F 4 ~ Fi, i = 1,2,3, and F4 N X. Thus 

F4 n Y = ~ and Y cannot have 9 facets. Therefore, we have shown that X 

cannot contain 3 neighbours of x. 

Because of the symmetry of the problem, we may finally assume that xi ~ X, 

Yi ~ X for i = 1,2 and x i E Y, y~ ~ Y for i = 3,4. As before, x~ and x2 cannot have a 

neighbour in common in X and the same is true of Yl and Y2. Now if 6(xi, y~) = 4 

for i 1,2, then let ~ ~ ~--- Xi~27374 Yi be a path of  length 4 from x~ to Yi for i = 1,2. 

Then V~ # 722, T~ # ;~42, 721 # x2, 72 ~ Xl, 74 I ~ Y2 and 72 # Yl. Also we note that 

7a 1 # 72. Thas th~se vertices together with the four remaining neighbours 

xa, x 2 and Yl, Y2 are the 14 vertices of  X. But it is clear that the graph of X cannot 

be 3-connected. So we may assume that fi(x l, Yl) = 5. In this case we must have 

6(x2,Y2) = 3 as X does not have a triangular facet containing the pair x~, x2 or 

the pair Ya, Y2. This completes the proof  of the theorem. 

COROLLARY. A(5,11) = 6 

PROOF. Following the results of  Klee and Walkup [1], it suffices to show that 

if P~(5,11)  is simple and x and y are vertices of P not sharing a facet then 

6(x, y) < 6. 

Let the x-facets be Fx, . . . ,Fs;  the y-facets be G1,'",G5 and the remaining 

facet X. Then there is at least one neighbour of x, x~ say, which does not lie in X. 

So x l ~ G j  for some j. Now Gj~(4 ,n)  with n < 10 and so, from Theorem 1, 

d(Gj) < 5. Hence 6(x, y) < 6. 

We note that this corollary constitutes a proof  of the 6-step conjecture for 

5-polytopes. Also it is now trivial to deduce the result of  Larman [-2] that A(6,12) 

< 7. Next we obtain some improvements of results concerned with the 7-step 

conjecture. 
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THEORE~ 2. I f  P E(5,12) and x and y are vertices of P such that ?J(x, y) = 9, 

then ~(y,v)= 8 for  any neighbour v of  x. 

PROOF. Again we may assume that the x-facets are F 1, . " ,F5 ,  the y-facets are 

G1, ' " ,  G5 and the remaining facets are X and Y. Since ~5(x, y) = 9 and A(4,11) < 7, 

no neighbour of x (or y) can lie in a y-(or x-) facet. Assume v is a neighbour of x 

with cS(y, v) = 9 and assume v ~ X. Then no neighbour of y can lie in X. Hence all 

neighbours of  y must tie in Y which is clearly impossible. This completes the proof  

of  the theorem. 

TUEOREM 3. A(6,13) < 9. 

PROOf. We let P ~ (6, t3), assume x and y are vertices of  P such that cS(x, y) = 10 

and seek a contradiction. 

Let the x-facets be F 1 , ' " ,  F6; the y-facets G1,..., G 6 and the remaining facet X. 

Let the neighbours of  x be x~ with xi~F~, i = 1,.- . ,6 and those of y be Yi with 

yi~ G~, i = 1,-..,6. There must be a neighbour of x which lies in a y-facet so we 

may assume that x 1 E G 1 and 6(xl, y) = 9. If  xi e G1 for some i ~ 1 then xl and xi 

are neighbours in G 1. So by Theorem 2, 6(y, x~) = 8 and thus fi(x, y) = 9. Hence 

we may assume that x ~  G~, i = 2, . . . ,6 and thus no neighbour of xt  in G~ can 

lie in Ft .  But not all neighbours o fx  t in G~ lie in X n G1 and so xt  has a neighbour, 

v say, lying in G i for some j ~ 1. Thus v e Gj c3 G1 and y E G j n  G1. Also Gj ~ G1 

(4,n) where n __< 11 and so 6(v, y ) N  7. Thus 6(x, y)<= 9 and the proof  is 

completed. 

An immediate corollary of this result is A(7,14) __< 10. 
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