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ABSTRACT

A(d, n) is defined to be the maximum diameter of a d-polytope with n-facets,
The main results of the work are an evaluation of A(4, 10) and A(5, 11). Also,
improved upper bounds are found for A(6, 13) and A(7,14).

A d-polytope is the convex hull of a finite set of points whose affine hull is
E* The points form vert P, the set of vertices of the polytope P, and the faces of
dimension d — 1 are called the faces. A d-polytope is said to be simple if each
vertex belongs to precisely d facets. If P is a simple d-polytope and x evert P
then the d facets through x are called the x-facets. If P is a d-polytope with n
facets, we write P c(d,n). If x and y are two vertices of P then (x, y) denotes the
combinatorial distance between x and y. The diameter d(P) of P is defined by
d(P) = max {8(x,y) : x, y e vert P}. Two vertices x, y of P are said to be diametral
vertices if 8(x,y) = d(P). Finally, we write A(d,n) = max {d(P): Pe(d,n)}; we
note that this is the same as A,(d,n) in [1].

The purpose of this work is to obtain improvements on the known estimates
for A(d,n) for certain values of d and n. The main results are an evaluation of
A(4,10) and A(5,11). We also improve the known upper bounds for A(6,13) and
A(7,14). These results are primarily concerned with the d-step conjecture which
can be stated as saying A(d,n) £ n — d. Combining the work of Klee and Walkup
[1] and Larman [2], the known results which we shall need are:

AQ3,n) = [%n_] ~1,nz4: 5£5A4,10)<L6:

6 <A, <7 A4,11) < 7: A(5,12) £9:
A(6,13) < 10: A(7,14) < 11.
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LeMMA. IfPe(3,9) and d(P) =S then,

(i) P is simple and has 14 vertices,

(ii) If ay, as € vert P and 6(aq,as) = 5 then 8(ao,v) < 4 for all v e vert P\{as},

(iii) If P, = ao, al, ai, ai, al, as (i =1,2,3) are 3 disjoint paths from a, to
as then the 12 vertices a}: (i=1,2,3,;j=1,2,3,4) form 6 disjoint pairs
{a}, al },I k — t[ <1, i #j such that (al, af) is an edge.

(iv) Each facet containing a, or as has at most 6 vertices,

(v) If a facet containing a, (or as) is an n-gon with n=5 then the other two
facets containing a, (or as) are a triangle and a quadrilateral,

(vi) There is at most one facet not containing ao, ai, a3, a; and as. If such a
facet F is present, then one of the facets that contain a, is a triangle. Further,
if F has 6 or more vertices then it must contain two neighbours of as.

vii) P cannot have a triangular facet not containing a, or as.

Proor. The results of this lemma, apart from (vi) are due to Larman [2] or
are immediate corollaries of his results, and so it will suffice to prove (vi).

Using (iv) and the fact that 8(al, as) =4 (i =1,2,3) one can see that the
neighbours of a, lie on at least 2 distinct facets not containing a, or as. This
means there is at most one remaining facet not containing a,, a5 nor any neighbour
of a, since P €(3,9). If no facet containing a, is a triangle then the neighbours
lie on 3 distinct facets not containing a, and as. Thus each facet of P contains
either ag, as or a neighbour of a,. Since the graph of P is planar and the P, are
distinct, exactly two of the P; may meet the facet; also no P, can use more than 3
vertices of the facet. This shows that the facet can be at most hexagonal and in
that case it must contain two of the vertices a, a3 and a3.

We now proceed to the evaluation of A(4,10) and A(5,11).
THEOREM 1. A(4,10) = 5.

Proor. Following the results of Klee and Walkup [1], it suffices to show that
if P (4,10) is simple and x and y are vertices of P not having a facet in common
then 8(x,y) < 5. To this end we suppose d(x,y) =6 and seek a contradiction.
This is sufficient since Larman [2] has shown that we must have §(x,y) < 6.

Let the x-facets be Fy, -+, Fy; the y-facets G,, -+, G, and the remaining facets X
and Y. Let the neighbours of x be xy, -+, x4 and those of y be y,, -, y, such that
x;¢F,and y,¢G;, i = 1,---,4. We split the proof into two possibilities.
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CaseE 1. A neighbour of x (or y) belongs to a y- (or x-) facet.

We may suppose without loss of generality that x, € G,. Then since 6(x,y) =6
we must have d(G,) =5 and so G, €(3,9) with x, and y as diametral vertices. If
x; € Gy with i # 1, then by (ii), 8(y, x;) < 4 and s0 §(x, y) < 5. Thus we may assume
that x; ¢ G, for i = 2,3,4. So no neighbour of x, in G, lies in F,, since any such
neighbour would be an x; with i # 1. Since G, €(3,9), G, NF; # . Therefore,
by (vi), G; N F; is the facet of G, not containing y nor any neighbour of x,, and
we may assume without loss of generality that F; N G, is a triangle.

Let G} be the facet of P containing y, but not y. Then, since G, €(3,9),
G, NG| # . Assume x, € G;'N G4, then x € G{ and so G, €(3,9) since otherwise
o(x,y1) < 5. Hence applying (vii) to G, we see that G; N Gy is not a triangle,
So we may put G, = F,, and thus d(F,) =5 and F,€(3,9). Now F, NG, is a
facet of F, with at least 4 vertices. Since x¢ G, and x;¢ G, for i # 1, F, NG,
must contain a vertex, o say, which is distance 3 from x and 2 from y,. So « and y,
have a common neighbour, o, say. Now a, ¢ G,, since otherwise a, would be y
or a neighbour of y both of which are impossible. If o; € F; with i # 2 then
o, €F,NF; and so F, NF, is a facet of F, containing o; and x. But this is
impossible by (iv) since d(x,a;) =4. Now y, =F, NG, NG3; NG, and o, €F,,
50 a, belongs to exactly two of G,, G3, G4. Thus « must belong to exactly one of
G,, G3, G4 since d(a,p) =3. So we may assume that «, e F, NG, NG, and
aeF, NGy NG,. Thus since d(a, y) =3, G; NG, must be a hexagonal facet of
G, by (iv). Let the vertices of this facet be «, S, B2, ¥, B3, B4 Where 8, e F, NG,
N G,. Then since 8(y, x,) = 5 we must have § (8;,x,) = 3 and so, by (iv). G, N F,
is also a hexagon. Now by (ii), no neighbour of y, in F, can lie in G,. Thus,
since x ¢ G, we have the desired contradiction using (vi) and the fact that x, ¢ G,
if i#1.

So now we must assume that x, ¢ G;. We note that we may assume y, ¢ F, for
i =2,3,4 since otherwise we would have a similar situation to that above. Also,
because of (ii), no neighbour of x, in G, can lie in F,. Thus, using (vi), (v) and
the fact that G, has 14 vertices, we deduce that the facets of G, containing x, are a
triangle, a quadrilateral and a pentagon and the same is true of the facets containing
y. So the graph of G; must be one the two possibilities shown in Fig. 1 with
k=1 and j=2,3 or 4.

If y, eFy, the two vertices of F; N G; NG; must be distance 4 from x and
therefore must both be neighbours of y,. But this is impossible since y, =
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G, NG3; NG, NF,. So now we know that y,¢ F, for i=1,---,4. We assume
without loss of generality that y, =G, NG, NG, NX,j=2,F, NG, NF, #J
and G; N G, is a triangle. Then, if x, € X U Y then x, has a neighbour, v say, on G1
such that 6(v, y) = 3. But then we would have &(x, y) =5, so this is impossible.

Also we know that x, ¢ G,. If x, € G, then, by the arguments above, the graph
of G, must be one of the possibilities shown in Fig. 1 with k=4 and j =1, 3 or4-

Clearly we must have j = 1 by (v) since G, N G, is a pentagon. But from the graph
of G;, we see that F,NG, NG, = ¥, and hence x, ¢ G,. Similarly, we may

deduce that x; ¢ X UY UG, UG,. If x, € G, then by (ii) we must have x; € G,
and the graph of G, must be one of the two possibilities shown in Fig. 1 with
k=4andj=1,2o0r4. Nowj# 1 since from the graph of G,, G; NF, NG3={.
If j = 4, then F, NG, NG, # &, but this is inconsistent with the graph of G,.
So we must have j = 2 and since G5 N G, is a triangle, we have G3 NG, is a quadri-
lateral. Thus G, NG, and G, NG, are both quadrilaterals containing y, but
since x; € G,, there can only be one quadrilateral facet of G, containing y. Hence
x4 ¢ G,. Since the above argument is symmetric in x; and x,, we deduce that
x3 ¢ G, and so we have x; €G, and x, € G,. But then 8(x,y) £ 5, by (ii). This
completes the proof of Case I.

Case II. No neighbour of x(or y) belongs to a y-(or x-) facet.

All the neighbours of x and y belong to either X or Y. Clearly we cannot have
all the neighbours of x belonging to X.

Assume x; € X for i = 1,2,3 and x, € Y. Then if y; € X for some j, we must have
8(x;, ;) = 4 for i = 1,2,3. We deduce that there can be only one such value of jt
If there were three such values of j, say j = 1,2,3, then X would have the two
triangular facets F, N X and G, N X. Replacing these facets by single vertices
results in a 3-polytope with at most 7 facets and which must have diameter 4.
This is impossible and so we assume j takes the two values 1 and 2. Then F, N X
is a triangular facet of X, and y, and y, are neighbours in X, We remove the
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triangular facet replacing it by a single vertex, v say. This gives us a 3-polytope X’

with at most 8 facets and vertices v, y; and y, such that é(v,y,) =4 for i = 1,2.
Hence X’ must have 8 facets and 12 vertices. The vertices must lie on 3 indepen-

dent paths from v to y, two of which are of length 4 and the other of length 5.
Then we note that X’ must have a triangular facet containing y, and y,. But the
third vertex of this triangle must be a neighbour of y, contradicting the assumption
that there are only two possible values of j. This shows that there is only one
possible value of j. If there is such a value we note that X must have 9 facets since
we can again reduce it to a 3-polytope X' of diameter 4. So now we may assume
further that y;c¢ Y, i = 2,3,4 and y, € X. Thus since 6(x, y) = 6, Y must also have 9
facets. Now F, is a tetrahedron with facets F, N F;, i = 1,2,3, and F, N X. Thus
F,NY = and Y cannot have 9 facets. Therefore, we have shown that X
cannot contain 3 neighbours of x.

Because of the symmetry of the problem, we may finally assume that x; € X,
vieXfori=12andx;€Y, y;eY fori = 3,4. As before, x, and x, cannot have a
neighbour in common in X and the same is true of y, and y,. Now if §(x;, y;) = 4
for i = 1,2, then let x;y5yi 9. v, be a path of length 4 from x; to y; for i = 1,2.
Then 7; # 93, 74 # 72> 72 # X2, V1 # X1, ¥4 # ¥ and 3 # y,. Also we note that
73 # 2. Thus thase vertices togsther with the four remaining neighbours
Xy, X, and y,, y, are the 14 vertices of X. But it is clear that the graph of X cannot
be 3-connected. So we may assume that §(x,,y,) = 5. In this case we must have
0(x3, ¥2) =3 as X does not have a triangular facet containing the pair x;, x, or
the pair y,, y,. This completes the proof of the theorem.

CoROLLARY. A(5,11) =6

Proor. Following the results of Klee and Walkup [1], it suffices to show that
if Pe(5,11) is simple and x and y are vertices of P not sharing a facet then
8(x,y) £ 6.

Let the x-facets be Fy,--,Fs; the y-facets be Gy,-++,Gs and the remaining
facet X. Then there is at least one neighbour of x, x, say, which does not lie in X.
So x; €G; for some j. Now G;e(4,n) with n <10 and so, from Theorem 1,
d(G;) < 5. Hence d(x,y) £ 6.

We note that this corollary constitutes a proof of the 6-step conjecture for
5-polytopes. Also it is now trivial to deduce the result of Larman [2] that A(6,12)

= 7. Next we obtain some improvements of results concerned with the 7-step
conjecture.
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THEOREM 2. If P €(5,12) and x and y are vertices of P such that §(x, y) =9,
then &(y,v) = 8 for any neighbour v of x.

PrROOF. Again we may assume that the x-facets are F,---, F5, the y-facets are
G,,-++,Gs and the remaining facets are X and Y. Since 6(x,y) =9 and A(4,11) £ 7,
no neighbour of x (or y) can lie in a y-(or x-) facet. Assume v is a neighbour of x
with §(y, v) = 9 and assume v € X. Then no neighbour of y can lie in X. Hence all
neighbours of y must lie in Y which is clearly impossible. This completes the proof
of the theorem.

THEOREM 3. A(6,13) £9.

Proor. We let P €(6,13), assume x and y are vertices of P such that 5(x, y) = 10
and seek a contradiction,

Let the x-facets be Fy,-:-, F¢; the y-facets Gy, -+, G and the remaining facet X.
Let the neighbours of x be x; with x;¢ F;, i =1,---,6 and those of y be y, with
yi#G;, i=1,-,6. There must be a neighbour of x which lies in a y-facet so we
may assume that x, € G, and §(x,,y) =9. If x; € G, for some i # 1 then x; and x;
are neighbours in G;. So by Theorem 2, §(y, x;) = 8 and thus §(x, y) = 9. Hence
we may assume that x;¢ G, i =2,---,6 and thus no neighbour of x, in G; can
liein F,. But not all neighbours of x, in G, liein X N G, and so x, has a neighbour,
v say, lying in G; for some j # 1. Thus ve G; NG, and y € G; N G,. Also G; NG,
€(4,n) where n <11 and so (v, y) £7. Thus 6(x, y) £9 and the proof is
completed.

An immediate corollary of this result is A(7,14) £ 10.
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